INNOVA G # **Control Single** Seat Valve # **APPLICATION** The INNOVA G-type valve is a pneumatic flow control single seat valve for hygienic applications. Its main function involves regulating flow, controlling pressure and level. The plug's design enables equal percentage flow control to obtain the required Kv factor. This type of control is recommended for systems with significant flow or differential pressure variations. Positioning is controllable either manually or using a process parameter via the positioning sensor. ## DESIGN AND FEATURES Normally closed (NC) valve without seal in the plug. Equal percentage control plug. Dual function positioner: position controller (PD) or process controller (PID). Easy assembly/disassembly of internal parts by loosening a clamp fastener. Open lantern allows visual inspection of shaft sealing. 360° adjustable body. # TECHNICAL SPECIFICATIONS #### **Materials** 1.4404 (AISI 316L) Parts in contact with the product Other stainless steel parts 1.4301 (AISI 304) **EPDM** Gaskets in contact with the product Surface finish Internal Bright polish Ra ≤ 0,8 µm External Matt Available sizes DIN EN 10357 series A DN 25 - DN 100 (previously DIN 11850 series 2) OD 1" - OD 4" ASTM A269/270 (corresponds to OD pipe) #### Connections Weld ## **Operating limits** Temperature range Temperature SIP Maximum working pressure Minimum working pressure Compressed air pressure -10°C to 121°C 140°C (max. 30 min.) 1000 kPa (10 bar) Vacuum 6 - 8 bar 14°F to 250°F 284°F 145PSI Vacuum 87 - 116 PSI # OPTIONS Double-acting pneumatic actuator. Gaskets: FPM, HNBR. Seat seal. Other connection types. Surface finish: Ra < 0,5 μ m. Bodies with heating jacket. Steam barrier. Oteani banier. # DIMENSIONS | | DN | Pipe Ø | Α | В | С | D | E | ØF | H1 | H2 | kg¹ | |----|-----|--------------|-----|-----|-----|----|----|-----|-----|-----|-----| | DN | 25 | 29,0 x 1,50 | 50 | 50 | 50 | 32 | 15 | 87 | 239 | 436 | 4,7 | | | 40 | 41,0 x 1,50 | 85 | 60 | 62 | 38 | 23 | 87 | 242 | 446 | 5,8 | | | 50 | 53,0 x 1,50 | 90 | 70 | 74 | 44 | 31 | 112 | 303 | 517 | 8,9 | | | 65 | 70,0 x 2,00 | 110 | 90 | 92 | 53 | 36 | 143 | 350 | 569 | 17 | | | 80 | 85,0 x 2,00 | 125 | 90 | 107 | 60 | 35 | 143 | 358 | 576 | 18 | | | 100 | 104 x 2,00 | 150 | 125 | 127 | 70 | 30 | 216 | 387 | 603 | 34 | | OD | 1" | 25,4 x 1,65 | 50 | 50 | 46 | 30 | 11 | 87 | 241 | 438 | 4,7 | | | 1½" | 38,1 x 1,65 | 85 | 60 | 59 | 36 | 20 | 87 | 243 | 448 | 5,7 | | | 2" | 50,8 x 1,65 | 90 | 70 | 72 | 43 | 29 | 112 | 304 | 518 | 8,9 | | | 2½" | 63,5 x 1,65 | 110 | 90 | 86 | 50 | 30 | 143 | 353 | 572 | 17 | | | 3" | 76,2 x 1,65 | 125 | 90 | 99 | 56 | 27 | 143 | 362 | 580 | 18 | | | 4" | 101,6 x 2,11 | 150 | 125 | 124 | 69 | 28 | 216 | 388 | 601 | 34 | ¹⁾ The weights correspond to the "L" housing combination # HOUSING COMBINATIONS # SIZING Use the Kv factor to size the control valves, which relates the drop in pressure with the flow. The Kv factor indicates the flow in m³/h for a 1 bar drop in pressure. The Kv values are calculated for water at temperature of 5° to 30°C. The following formula can calculate the required Kv for products with a similar density and viscosity to water: $$Kv = \frac{Q}{\sqrt{\Delta P}}$$ where: $Q \equiv flow (m^3/h)$ $\Delta P \equiv drop in pressure in the valve$ The selected Kv_s factor should be higher than the required Kv factor to ensure enough margin for the control function. This involves applying a safety coefficient: $$Kvs > Kv_r = \frac{Kv}{0.7}$$ Example: $$Q = 18 \text{ m}^3/\text{h}$$; $\Delta P = 0.5 \text{ bar}$ $$Kv = \frac{18}{\sqrt{0.5}} = 25.5 \text{ m}^3/\text{h}$$ $$Kv_s = \frac{25.5}{0.7} = 36.4 \text{ m}^3/\text{h}$$ This value indicates that the DN-50 ($Kv_s = 40$) would be the most suitable valve. Ask the technical department regarding cases involving viscous products. % of valve stroke